超高効率太陽電池の研究と 水素社会への展開

Consumption

中野 義昭 東京大学大学院工学系研究科

太陽電池の効率記録

Best Research-Cell Efficiencies

集光型太陽電池

The Fresnel lenses in FLATCON® modules concentrate sunlight by a factor of 500.

Puertollano and Seville (Spain)

www.concentrix-solar.de

PVコストのラーニングカーブ

CPVのデータを追記

Siパネルと同様のラーニングカーブを仮定すれば、CPVについて累積100GW導入時には\$1/Wp以下のシステムコストが可能

CPVとSiモジュールの比較

	Cell eff.	Junction	Cell area (mm ²)	Conc (suns)	Opt. eff.	PR	System cost (\$/Wp)
CPV1	40	3	50	400	80%	81%	3.04
CPV2	50	4	10	1000	85%	85%	1.90
CPV3	50	4	1	1500	90%	85%	0.88

Siパネルの発電量 GHI×モジュール効率×PR PR: Performance ratio 耐久年数25年を仮定

低DNI地域:DNI<GHI 高DNI地域ではDNI>GHI

効率向上によるコスト低減

	Cell eff.	Junctio n	Cell area (mm ²)	Conc (suns)	Opt. eff.	PR	System cost (\$/Wp)
Baseline	40	3	50	400	80%	81%	3.05
Cell 50%	50	4	50	1000	80%	81%	2.45
Improved optics	50	4	1	1500	90%	68%	1.45
Improved tracking	50	4	1	1500	90%	86%	1.49

セル効率とモジュール効率

Graphic: Fraunhofer ISE; Data for solar cell efficiencies: Green et al. Progress in Photovoltaics (1993-2013)

■セル効率だけでなく、モジュール効率の向上が課題、
 ■光学効率の良い集光システムが必須.

CPVの普及には日本の産業界の総合力が必要

現状CPVでは、効率のチャンピオン効率と、運用時のシステム効率の開きが大きい.

総合的な高効率・高信頼化の取り組みにより. 長期運用でもっともパフォーマンス を発揮できるシステムを構築すべき. ターンキーモデルでは実現不可能. →日本の強みがもっとも活かされる分野!

□ 高効率化

- セル効率
- モジュール効率(光学技術・放熱技術)
- システム効率(追尾精度)

□ 低損失化

CPVでは表面汚染による光散乱の影響が、パネルよりも大きい →防汚コーティング

□ 長寿命化・高信頼性 多数部品の摺合せ技術→日本の得意技

レメンテナンス・アフターサービス 日本の得意技!

太陽電池の動作原理(なぜ100%のエネルギー変換ができないか?)

太陽電池の電流-電圧特性(非集光下)

R. King et al., Prog. Photovolt: Res. Appl. 2011; 19:797–812

光子のリサイクル

ロ発光再結合は変換効率を低下させない

太陽電池の電流-電圧特性(集光下)

太陽電池の電流-電圧特性(集光下)

集光による変換効率向上

開放電圧低下の熱力学的解釈

Hirst et al., Prog. Photovolt: Res. Appl. 2011; **19:** pp. 286–293

高効率化に向けた取り組み ~多接合太陽電池~

→エネルギーの大きな光子から順に電力に変換

(光子のエネルギーを無駄なく利用)

ロ中間セルからの電流出力が全体の電流出力のボトルネック

3接合セルのさらなる高効率化

 ■格子整合系材料 (InGaP/GaAs/Ge)
 →電流不整合
 ■電流整合と最適Egの組み合わ せを両立する材料

→GalnNAs(結晶の質に難あり)

多接合セルの高効率化に向けた戦略

逆エピタキシャル成長+リフトオフ

T. Takamoto, et al, Proc. IEEE PVSC 35, pp. 412-417 (2010).

GalnNAsを用いた中間セル

Lattice constant, a₀ (Å)

Material for 3rd sub-cell: GalnNAs

- ► ~1 eV bandgap.
- ► Lattice-match to GaAs, Ge.

Control of In & N composition enables lattice-match to GaAs. ([In]:[N] ~3:1)

GalnNAsの結晶品位改善

■N取り込みの不均一性がキャリア移動度を悪化させる
 →結晶成長プロセスの改善が必要(Sbサーファクタントなど)

歪み補償量子井戸

A strain-balanced stack

単接合セル

量子構造挿入セル

■実効バンドギャップの減少→ 電流増大
 Δµの減少→電圧低下

量子井戸挿入のメリット・デメリット

究極の量子井戸挿入セル

□ 薄いInGaAs井戸

- 吸収端波長での吸収強度は
 井戸の厚さでなく数に比例
- 薄い井戸→歪みの蓄積が少ない
- □ GaAs緩衝層
 - ・ 階段型ポテンシャル→キャリア脱出促進
 - 結晶歪みの大きいヘテロ界面の除去

□ 薄いGaAsP障壁層

• キャリアのトンネル輸送

●最適構造	
In _{0.30} GaAs	3.5 nm
GaAs	2.6 nm
GaAsP _{0.40}	3.0 nm
GaAs GaAsP _{0.40}	2.6 nm 3.0 nm

究極の量子井戸セル

w/o anti-reflection coating

中間バンドセル

■実効バンドギャップの減少> 電流増大
 ■E_iとE_{Fn}を分離(赤外光励起)> 電圧低下せず

中間バンド動作実現のために

■VB→IB, IB→CBの光吸収を最大化することがポイント

MBEによる量子ドット成長

Mean height: 4.7 nm

• 100 nm

高電圧低電流量子ドット太陽電池

高倍集光下の特性

高効率化と低コスト化に向けた動向

ウエハ接合による4接合セル

III-V-based Multi-junction Solar Cell

集光太陽電池の低コスト化に向けて

エピ技術

on Si成長

ウエハ接合

・高追尾精度&低コストな 追尾メカ

□装置技術・実装技術 の出番!

・LEDやヘッドライトの設計・製造技術を 活用した集光モジュール設計

まとめ:太陽電池の高効率化に向けて

□集光+非発光再結合の抑制(結晶欠陥抑制)が必須
 □多接合セルの高効率化

- 格子整合条件⇔バンドギャップ組み合わせの最適化
- GalnNAs: 結晶品位が向上すれば最適なミドルセル材料
- 量子井戸セル: 基板の制約のなかでのバンドギャップ調整
 - ・ 歪み保障量子井戸→多数の井戸積層が可能→光吸収に有利
 - 閉じ込め準位からのキャリア取り出しがつねに課題→薄い障壁層

ロ中間バンドセル

・バンドギャップ内中間準位の提供:量子ドットなど
 →電圧をキープしたまま電流増大

ロ集光太陽電池の低コスト化・普及に向けて

- 高倍集光下では、Ⅲ-V半導体コストではなく、モジュール実装コストや集光 光学系・追尾系のコストが主要
- 革新的技術の導入により、シリコンパネルと競争可能なコストを実現可能.

蓄エネの2大技術

水素蓄エネ技術

再生可能エネルギー利用 自立分散型エネルギーシステム

水素蓄エネ技術の位置づけ

蓄電池: コスト∝エネルギー容量 (大規模蓄エネほど高コスト) 水素蓄エネ: コスト∝エネルギー時間密度 (大規模蓄エネでもコストはほぼ不変)

太陽光から水素へのエネルギー変換

The fraction of energy stored as ΔG of hydrogen with respect to incident solar energy

$$H_2O = H_2 + \frac{1}{2}O_2 \quad \Delta G = 1.23 \text{ eV}$$

 $\eta_{\text{STH}} = \frac{(1.23 \text{ V})(1.6 \text{x} 10^{-19} \text{ C})(\# \text{ of H}_2 \text{ molecules obtained})}{\text{Incident solar energy (W m}^2)}$

Reported Solar to Hydrogen Conversion Efficiencies

Shaner, Walczak, Sharp, Ardo, Ager, under review

Solar-to-hydrogen energy conversion

Novel cell uses light to produce H₂ at 12.4% efficiency

12% STH Turner *et al*. (1998) Pt/pn-GaAs//p-GaInP/Pt

~5% STH van de Krol *et al*. (2013) Co-Pi/BiVO₄//2J-a-Si/Pt wire 18% STH Licht *et al.* (2000) RuO₂/pn-AlGaAs//pn-Si/Pt black

10% STH Jacobsson *et al*. (2013) 3xCIGS tandem + Pt ~3% STH Nocera *et al*. (2011) Co-Pi/3J-a-Si/NiMoZn

集光多接合太陽電池

2014.08.27 @ Miyazaki Univ.

効率太陽電池と電解セルの直接接続

太陽電池と電解セルのI-V特性の交点が動作点になる

光触媒: GaN on 2インチサファイアウエハ(20 cm²)

太陽電池受光面積 20 × 20 cm² × 3 = 1200 cm²

Voltage

GS

University of Tokyo

ヽの要請

■ STH > 20%は十分可能

Fractional Efficiency [-]	Now	Target	Comment
Solar cell	0.24	0.30	Approximately 30% has been reported.
Pop/Pmax	0.92	0.95	By optimizing connection
V(H2)/Vop	0.69	0.77	$\Delta G/\Delta H$ for H ₂ O evolution is 0.83.
Faraday	1.00	1.00	
Total	0.15	0.22	

水素製造コスト\$2.2 /kg (オーストラリア等の日照条件の良い地域で)

CO₂からの太陽光燃料生成(人工光合成)の高効率化など さらにアグレッシブな目的には 太陽電池と電気化学反応器を分離するアプローチが有効.

光合成(PSII)に学ぶ低過電圧電極

 $CaMn_2O_4$ 電極による酸素発生の低過電圧化

報告されている酸素生成触媒との比較

RuO₂,よりは大きいが、地球上に豊富な物質利用では最も小さい過電圧

家庭・コミュニティー用

太陽光パネル

水素蓄エネ自立エネルギーシステムの社会実装

コストメリットあり

- 人口低密度地域,離島などに有効 ● 電力網整備コスト>水素蓄エネのシステムコスト エネルギー自給自足の価値 現在でも、地域条件により 農業などへの応用
- 今すぐ構築可能なシステム (でも、まだ存在しない、) まずはデモンストレーションが必要

世界規模のエネルギーシステム

大規模エネルギー消費地 ≠ 日照条件の良い地域
 太陽光エネルギーの蓄エネ,輸送が不可欠.

Energy density in various storage media

- Metal redox reaction
 - High energy density, ready for transport
- Hydrocarbon combustion
 - The same as existing fossil fuels
 - Solar synthesis of hydrocarbons is highly demanded.

各媒体のエネルギー密度

	(kWh/kg)	(kWh/L)
ガソリン(燃焼)	12.2	9.7
メタノール(燃焼)	6.4	4.6
水素(150気圧)(燃焼)	39.5	0.5
メチルシクロヘキサン(H ₂ キャリア)	2.4	1.86
アンモニア(H2キャリア)	7.0	4.5 (液化)
CH₄(燃焼)	11.3	6.4 (液化)
Mg酸化	6.9	12.0

CO₂フリー天然ガスのエネルギー効率

ソーラー天然ガスの課題と展望

- 現状ではCO₂は片道利用のみ
 - 次世代エネルギーキャリア出現までの現実的な「つなぎ」
- すぐに実現できる技術.まずは社会実装が優先.
- これからの技術開発
 - 低濃度CO2の濃縮
 - 低濃度CO₂を効率よく還元する反応器 ←新技術が必要

Y. Hori, Modern Aspects Electrochem. 42 (2008) 89.

高選択CO2還元サイト

